Skip to main content

Search

Items tagged with: lz4


Repeated the #compression #benchmark with the same file on a beefier machine (AMD Ryzen 9 5950X), results are quite identical, except faster overall.

This plot is also interesting:

- #gzip and #lz4 have fixed (!) and very low RAM usage across levels and compression/decompression
- #xz RAM usage scales with the level from a couple of MBs (0) to nearly a GB (9)
- #zstd RAM usage scales weirdly with level but not as extreme as #xz

#Python #matplotlib


First let's look only at the non-fancy options (no --fast or multithreading) and make log-log plots to better see what's happening in the 'clumps' of points. Points of interest for me:

- #gzip has a *really* low memory footprint across all compression levels
- #zstd clearly wins the decompression speed/compression ratio compromise!
- #xz at higher levels is unrivalled in compression ratio
- #lz4 higher levels aren't worth it. #lz4 is also just fast.

#zstd #xz #gzip #lz4


⏱️ Compression vs Decompression speed. Interesting that #zstd has some settings that actually decompress slower than they compress. Might just be my machine, though... #xz is still a turtle 🐢, #gzip is not much better, #lz4 decompresses much faster than is compressed, #zstd again has something for everybody.
#zstd #xz #gzip #lz4


My conclusion after all this is that I'll probably use #zstd level 1 (not the default level 3!) for #compression of my #CSV measurement data from now on:

- ultra fast compression and decompression, on par with #lz4
- nearly as good a compression ratio as #gzip level 9
- negligible RAM usage

When I need ultra small files though, e.g. for transfer over a slow connection, I'll keep using #xz level 9.